Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 92(3): 370-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909486

RESUMO

The thioredoxin system is a ubiquitous oxidoreductase system consisting of the enzyme thioredoxin reductase, the protein thioredoxin, and the cofactor nicotinamide adenine dinucleotide phosphate. The system has been comprehensively studied from many organisms, such as Escherichia coli; however, structural and functional analysis of this system from psychrophilic bacteria has not been as extensive. In this study, the thioredoxin system proteins of a psychrophilic bacterium, Colwellia psychrerythraea, were characterized using biophysical and biochemical techniques. Analysis of the complete genome sequence of the C. psychrerythraea thioredoxin system suggested the presence of a putative thioredoxin reductase and at least three thioredoxin. In this study, these identified putative thioredoxin system components were cloned, overexpressed, purified, and characterized. Our studies have indicated that the thioredoxin system proteins from E. coli were more stable than those from C. psychrerythraea. Consistent with these results, kinetic assays indicated that the thioredoxin reductase from E. coli had a higher optimal temperature than that from C. psychrerythraea.


Assuntos
Alteromonadaceae , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Proteínas de Bactérias/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Mar Drugs ; 20(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355015

RESUMO

Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.


Assuntos
Alteromonadaceae , Vibrio , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Sefarose/metabolismo , RNA Ribossômico 16S/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Vibrio/genética , Vibrio/metabolismo , DNA/metabolismo
3.
Enzyme Microb Technol ; 161: 110109, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35939899

RESUMO

Alginate lyases can depolymerize alginate to oligomers with potential applications in many fields. Here a new alginate lyase, namely AlgL6, was characterized from Microbulbifer sp. ALW1, phylogenetically classified into the polysaccharide lyase family 6 (PL6). The recombinant alginate lyase AlgL6 exerted enzymatic activities towards polymannuronate, polyguluronate, and sodium alginate in an exolytic manner. AlgL6 had an optimum temperature of 35 °C and good stability at 30 °C or below. Its optimum pH was 8.0, and it had good stability over the pH range of 5.0-9.0. AlgL6 exhibited excellent halo-stability against Na+, and its activity can be increased up to about 1.8 times by 0.5 M NaCl. AlgL6 also showed strong stability in the presence of some nonionic detergents such as Tween 20 and Tween 80. The degradation products of sodium alginate by AlgL6 exhibited more effective antioxidant activities than the undigested polysaccharides. Structure analysis illustrated the catalytic mechanism defined by the coordination of the acid/base residues Arg269 and Lys248 of AlgL6. The replacement of Ca2+-interacting amino acid residues in AlgL6 and depletion of Ca2+ suggested the involvement of Ca2+ in the enzyme's catalytic activity. These properties of AlgL6 supply support to its industrial application for development of alginate bioresource.


Assuntos
Alteromonadaceae , Cálcio , Alginatos/metabolismo , Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/metabolismo , Cloreto de Sódio , Especificidade por Substrato
4.
Protein Pept Lett ; 29(8): 692-701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35708079

RESUMO

BACKGROUND: Mannans are the main components of hemicellulose in nature and serve as the major storage polysaccharide in legume seeds. To mine new mannanase genes and identify their functional characteristics are an important basis for mannan biotechnological applications. OBJECTIVE: In this study, a putative mannanase gene (ManBs31) from the genome of the marine bacterium Alteromonadaceae Bs31 was characterized. METHODS: Amino acid sequence analysis and protein structural modeling were used to reveal the molecular features of ManBs31. The catalytic domain of ManBs31 was recombinantly produced using Escherichia coli and Pichia pastoris expression systems. The biochemical properties of the enzymes were determined by reducing sugar assay and thin-layer chromatography. RESULTS: Sequence analysis revealed that ManBs31 was a multidomain protein, consisting of a catalytic domain belonging to glycoside hydrolase family 5 (GH5) and two cellulose-binding domains. Recombinant ManBs31-GH5 exhibited the maximum hydrolytic performance at 70 ºC and pH 6. It showed the best hydrolysis capacity toward konjac glucomannan (specific enzyme activity up to 1070.84 U/mg) and poor hydrolysis ability toward galactomannan with high side-chain modifications (with a specific activity of 344.97 U/mg and 93.84 U/mg to locust bean gum and ivory nut mannan, respectively). The hydrolysis products of ManBs31-GH5 were mannooligosaccharides, and no monosaccharide was generated. Structural analysis suggested that ManBs31-GH5 had a noncanonical +2 subsite compared with other GH5 mannanases. CONCLUSION: ManBs31 was a novel thermophilic endo-mannanase and it provided a new alternative for the biodegradation of mannans, especially for preparation of probiotic mannooligosaccharides.


Assuntos
Alteromonadaceae , Mananas , Mananas/química , Mananas/metabolismo , Alteromonadaceae/metabolismo , Sequência de Aminoácidos , Especificidade por Substrato , beta-Manosidase/genética , beta-Manosidase/química , Glicosídeo Hidrolases , Hidrólise , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Mar Drugs ; 20(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35447927

RESUMO

Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.


Assuntos
Alteromonadaceae , Alginatos/metabolismo , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Ecossistema , Polissacarídeo-Liases/metabolismo , Cloreto de Sódio , Especificidade por Substrato , Açúcares
6.
J Microbiol Biotechnol ; 32(1): 27-36, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34750287

RESUMO

Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37°C with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.


Assuntos
Alteromonadaceae/metabolismo , Butiratos/metabolismo , Alteromonadaceae/genética , Biodegradação Ambiental , Carbono , Hidroxibutiratos , Biologia Marinha , Nitrogênio , Plásticos/metabolismo , Poliésteres , Água do Mar/microbiologia , Temperatura
7.
Appl Environ Microbiol ; 87(12): e0023021, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811026

RESUMO

Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCEColwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core ß-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.


Assuntos
Ágar/metabolismo , Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Alteromonadaceae/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Genômica , Glicosídeo Hidrolases/genética , Hidrólise , Família Multigênica , Filogenia
8.
Int J Food Microbiol ; 347: 109199, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33878643

RESUMO

Zhacai is a traditional fermented vegetable that has been consumed in China for centuries. It is currently manufactured by spontaneous fermentation and therefore mostly relies on the activities of autochthonous microorganisms. Here, we characterized microbial community dynamics and associated biochemical changes in 12% salted Zhacai during a 90-day spontaneous fermentation process using high-throughput sequencing and chromatography-based approaches to identify associations between microorganisms and fermentation characteristics. Amplicon sequencing targeting bacterial 16S rRNA genes revealed that bacterial communities were dominated by halophilic bacteria (HAB, i.e., Halomonas and Idiomarina) and lactic acid bacteria (LAB, i.e., Lactobacillus-related genera and Weissella) after 30 days of fermentation. In addition, the relative abundances of the fungal genera Debaryomyces, Sterigmatomyces, and Sporidiobolus increased as fermentation progressed. Concomitantly, pH decreased while titratable acidity increased during fermentation, along with associated variation in biochemical profiles. Overall, the levels of organic acids (i.e., lactic and acetic acid), free amino acids (i.e., alanine, lysine, and glutamic acid), and volatiles (i.e., alcohols, esters, aldehydes, and ketones) increased in mature Zhacai. In addition, the abundances of Lactobacillus-related species, Halomonas spp., Idiomarina loihiensis, as well as that of the yeast Debaryomyces hansenii, were strongly correlated with increased concentrations of organic acids, amino acids, biogenic amines, and volatiles. This study provides new detailed insights into the succession of microbial communities and their potential roles in Zhacai fermentation.


Assuntos
Alteromonadaceae/isolamento & purificação , Fungos/isolamento & purificação , Lactobacillales/isolamento & purificação , Mostardeira/microbiologia , Weissella/isolamento & purificação , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Aminoácidos/metabolismo , Aminas Biogênicas/metabolismo , Reatores Biológicos , China , Fermentação , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillales/genética , Lactobacillales/metabolismo , Microbiota , RNA Ribossômico 16S/genética , Weissella/genética , Weissella/metabolismo
9.
RNA ; 27(2): 133-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184227

RESUMO

The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.


Assuntos
Genoma Arqueal , Genoma Bacteriano , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Pareamento de Bases , Sequência de Bases , Clostridiales/classificação , Clostridiales/genética , Clostridiales/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/metabolismo , Conformação de Ácido Nucleico , Filogenia , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 5S/química , RNA Ribossômico 5S/metabolismo , Thermoanaerobacterium/classificação , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo
10.
Environ Microbiol ; 23(2): 934-948, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32815245

RESUMO

Heavy metal is one of the major factors threatening the survival of microorganisms. Here, a deep-sea bacterium designated Idiomarina sp. OT37-5b possessing strong cadmium (Cd) tolerance was isolated from a typical hydrothermal vent. Both the Cd-resistance and removal efficiency of Idiomarina sp. OT37-5b were significantly promoted by the supplement of cysteine and meanwhile large amount of CdS nanoparticles were observed. Production of H2 S from cysteine catalysed by methionine gamma-lyase was further demonstrated to contribute to the formation of CdS nanoparticles. Proteomic results showed the addition of cysteine effectively enhanced the efflux of Cd, improved the activities of reactive oxygen species scavenging enzymes, and thereby boosted the nitrogen reduction and energy production of Idiomarina sp. OT37-5b. Notably, the existence of CdS nanoparticles obviously promoted the growth of Idiomarina sp. OT37-5b when exposed to light, indicating this bacterium might grab light energy through CdS nanoparticles. Proteomic analysis revealed the expression levels of essential components for light utilization including electron transport, cytochrome complex and F-type ATPase were significantly up-regulated, which strongly suggested the formation of CdS nanoparticles promoted light utilization and energy production. Our results provide a good model to investigate the uncovered mechanisms of self-photosensitization of nonphotosynthetic bacteria for light-to-chemical production in the deep biosphere.


Assuntos
Alteromonadaceae/metabolismo , Compostos de Cádmio/metabolismo , Cádmio/metabolismo , Água do Mar/microbiologia , Sulfetos/metabolismo , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Compostos de Cádmio/química , Cisteína/metabolismo , Hidrogênio/metabolismo , Nanopartículas/química , Proteômica , Sulfetos/química
11.
BMC Genomics ; 21(1): 692, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023469

RESUMO

BACKGROUND: The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. RESULTS: Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. CONCLUSIONS: We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.


Assuntos
Adaptação Fisiológica , Alteromonadaceae/genética , Ambientes Extremos , Genoma Bacteriano , Proteoma , Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Alteromonadaceae/classificação , Alteromonadaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Respiração Celular , Pressão Hidrostática , Fluidez de Membrana , Metilaminas/metabolismo , Nitritos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Transposases/genética , Transposases/metabolismo
12.
J Biol Chem ; 295(2): 539-551, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801828

RESUMO

Sensing of red and far-red light by bacteriophytochromes involves intricate interactions between their bilin chromophore and the protein environment. The light-triggered rearrangements of the cofactor configuration and eventually the protein conformation enable bacteriophytochromes to interact with various protein effector domains for biological modulation of diverse physiological functions. Excitation of the holoproteins by red or far-red light promotes the photoconversion to their far-red light-absorbing Pfr state or the red light-absorbing Pr state, respectively. Because prototypical bacteriophytochromes have a parallel dimer architecture, it is generally assumed that symmetric activation with two Pfr state protomers constitutes the signaling-active species. However, the bacteriophytochrome from Idiomarina species A28L (IsPadC) has recently been reported to enable long-range signal transduction also in asymmetric dimers containing only one Pfr protomer. By combining crystallography, hydrogen-deuterium exchange coupled to MS, and vibrational spectroscopy, we show here that Pfr of IsPadC is in equilibrium with an intermediate "Pfr-like" state that combines features of Pfr and Meta-R states observed in other bacteriophytochromes. We also show that structural rearrangements in the N-terminal segment (NTS) can stabilize this Pfr-like state and that the PHY-tongue conformation of IsPadC is partially uncoupled from the initial changes in the NTS. This uncoupling enables structural asymmetry of the overall homodimeric assembly and allows signal transduction to the covalently linked physiological diguanylate cyclase output module in which asymmetry might play a role in the enzyme-catalyzed reaction. The functional differences to other phytochrome systems identified here highlight opportunities for using additional red-light sensors in artificial sensor-effector systems.


Assuntos
Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fitocromo/metabolismo , Regulação Alostérica , Alteromonadaceae/química , Proteínas de Bactérias/química , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/química , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fitocromo/química , Conformação Proteica , Multimerização Proteica
13.
Biochem Biophys Res Commun ; 523(2): 441-445, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31875842

RESUMO

Ulvan is a complex water-soluble sulfated polysaccharide in the cell wall of green algae belonging to genus Ulva. It is composed of l-rhamnose-3-sulfate (Rha3S), glucuronic acid (GluA), iduronic acid (IduA), and d-xylose (Xyl) distributed in three repetition moieties. The first step of a bacterial ulvan degradation is the cleavage of the ß-glycosidic bond between Rha3S and GluA/IduA through a ß-elimination mechanism by a ulvan lyase to produce oligo-ulvans with unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronate (Δ) at the non-reducing end. We have identified an ulvan associated polysaccharide utilization locus (PUL) residing between two ulvan lyase genes belonging to families of polysaccharide lyase 24 (PL24) and PL25 in the genome of a ulvan-utilizing bacterium Glaciecola KUL10 strain. The PUL contains many genes responsible for oligo-ulvan degradation. Among them, we demonstrated that both KUL10_26540 and KUL10_26770 had an unsaturated ß-glucuronyl hydrolase activity to produce Rha3S and oligosaccharides, such as Rha3S-GluA-Rha3S, Rha3S-IduA-Rha3S and, Rha3S-Xyl-Rha3S, by releasing 5-dehydro-4-deoxy-d-glucuronate. KUL10_26540 showed much higher activity than KUL10_26770 and was more active on disaccharide than tetrasaccharide. We also found a rhamnosidase activity on four KUL10 gene products, although they could not react on the sulfated rhamnose.


Assuntos
Alteromonadaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Ulva/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Glicosídeo Hidrolases/genética , Cinética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeos/isolamento & purificação
14.
Mar Drugs ; 17(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635432

RESUMO

Dextranase, a hydrolase that specifically hydrolyzes α-1,6-glucosidic bonds, has been used in the pharmaceutical, food, and biotechnology industries. In this study, the strain of Catenovulum agarivorans MNH15 was screened from marine samples. When the temperature, initial pH, NaCl concentration, and inducer concentration were 30 °C, 8.0, 5 g/L, and 8 g/L, respectively, it yielded more dextranase. The molecular weight of the dextranase was approximately 110 kDa. The maximum enzyme activity was achieved at 40 °C and a pH of 8.0. The enzyme was stable at 30 °C and a pH of 5-9. The metal ion Sr2+ enhanced its activity, whereas NH4+, Co2+, Cu2+, and Li+ had the opposite effect. The dextranase effectively inhibited the formation of biofilm by Streptococcus mutans. Moreover, sodium fluoride, xylitol, and sodium benzoate, all used in dental care products, had no significant effect on dextranase activity. In addition, high-performance liquid chromatography (HPLC) showed that dextran was mainly hydrolyzed to glucose, maltose, and maltoheptaose. The results indicated that dextranase has high application potential in dental products such as toothpaste and mouthwash.


Assuntos
Alteromonadaceae/metabolismo , Organismos Aquáticos/metabolismo , Placa Dentária/tratamento farmacológico , Dextranase/farmacologia , Biofilmes/efeitos dos fármacos , Dextranase/química , Dextranos/química , Glucanos/química , Glucanos/farmacologia , Glucose/química , Concentração de Íons de Hidrogênio , Hidrólise , Maltose/química , Peso Molecular , Antissépticos Bucais/química , Streptococcus mutans/efeitos dos fármacos , Dente/efeitos dos fármacos , Cremes Dentais/química
15.
Curr Microbiol ; 76(9): 1061-1065, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31240393

RESUMO

Colwellia sp. Arc7-635, a psychrophilic denitrifying bacterium isolated from Arctic seawater, uses NO3- or NH4+ as the sole nitrogen source to grow at low temperatures. In this article, we describe the complete genome of Colwellia sp. Arc7-635. The genome has one circular chromosome of 4,741,350 bp (38.41 mol% G+C content), consisting of 3841 coding genes, 91 tRNA genes, as well as seven rRNA operons of 16S-23S-5S rRNA, and one operon of 16S-23S-5S-5S rRNA. According to the genomic annotation results, strain Colwellia sp. Arc7-635 encodes a complete denitrifying pathway consisting of genes affiliated with nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase. Genes affiliated with nitrate reduction to ammonia including nitrate reductases (NapA and NapB) and nitrite reductases (NirA, NirB, and NirD) were also identified. The whole genome sequences of Arc7-635 provide information that is useful for further clarifying nitrogen metabolisms and facilitate its potential applications in the bioremediation of nitrogen pollutions.


Assuntos
Alteromonadaceae/isolamento & purificação , Genoma Bacteriano , Água do Mar/microbiologia , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Regiões Árticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Composição de Bases , Sequência de Bases , Desnitrificação , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Óperon , Filogenia , RNA Ribossômico 16S , Sequenciamento Completo do Genoma
16.
Environ Microbiol ; 21(7): 2595-2609, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087606

RESUMO

Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.


Assuntos
Alteromonadaceae/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Quinolonas/metabolismo , Quinolonas/farmacologia , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Antibacterianos/química , Halogenação , Quinolonas/química , Água do Mar/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
17.
Appl Biochem Biotechnol ; 189(1): 1-12, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30854607

RESUMO

Gayadomonas joobiniege G7 is an agar-degrading bacterium, which produces various agarases that have been biochemically characterized recently. In this study, we biochemically characterized a new ß-agarase AgaJ10 belonging to the glycoside hydrolase (GH) 42 family from G. joobiniege G7. AgaJ10 is composed of 762 amino acids (89 kDa) and has the highest similarity (63% identity) to a putative ß-agarase from the agar-degrading bacterium Catenovulum sp. DS-2, which was obtained from the intestines of a Haliotis diversicolor. The optimal pH and temperature for AgaJ10 activity were determined to be 5.0 and 30 °C, respectively. AgaJ10 exhibited a cold tolerance, retaining more than 40% of its enzymatic activity at 5 °C. The Km and Vmax of AgaJ10 for agarose were 61.5 mg/mL and 294.1 U/mg, respectively. Notably, the activity of AgaJ10 was significantly enhanced by Mn2+ but was strongly inhibited by some metal ions, including Fe2+, Ni2+, and Cu2+. Agarose-liquefaction, mass spectrometry, and thin-layer chromatography analyses showed that AgaJ10 is an exo-type ß-agarase that hydrolyzes agarose only into neoagarobiose. Therefore, this study is the first report of a GH42 ß-agarase that catalyzes a neoagarobiose-producing exo-type reaction.


Assuntos
Alteromonadaceae/metabolismo , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Alteromonadaceae/enzimologia , Catálise , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Hidrólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
mBio ; 10(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30647156

RESUMO

The streamlining hypothesis is generally used to explain the genomic reduction events related to the small genome size of free-living bacteria like marine bacteria SAR11. However, our current understanding of the correlation between bacterial genome size and environmental adaptation relies on too few species. It is still unclear whether there are other paths leading to genomic reduction in free-living bacteria. The genome size of marine free-living bacteria of the genus Idiomarina belonging to the order Alteromonadales (Gammaproteobacteria) is much smaller than the size of related genomes from bacteria in the same order. Comparative genomic and physiological analyses showed that the genomic reduction pattern in this genus is different from that of the classical SAR11 lineage. Genomic reduction reconstruction and substrate utilization profile showed that Idiomarina spp. lost a large number of genes related to carbohydrate utilization, and instead they specialized on using proteinaceous resources. Here we propose a new hypothesis to explain genomic reduction in this genus; we propose that trophic specialization increasing the metabolic efficiency for using one kind of substrate but reducing the substrate utilization spectrum could result in bacterial genomic reduction, which would be not uncommon in nature. This hypothesis was further tested in another free-living genus, Kangiella, which also shows dramatic genomic reduction. These findings highlight that trophic specialization is potentially an important path leading to genomic reduction in some marine free-living bacteria, which is distinct from the classical lineages like SAR11.IMPORTANCE The streamlining hypothesis is usually used to explain the genomic reduction events in free-living bacteria like SAR11. However, we find that the genomic reduction phenomenon in the bacterial genus Idiomarina is different from that in SAR11. Therefore, we propose a new hypothesis to explain genomic reduction in this genus based on trophic specialization that could result in genomic reduction, which would be not uncommon in nature. Not only can the trophic specialization hypothesis explain the genomic reduction in the genus Idiomarina, but it also sheds new light on our understanding of the genomic reduction processes in other free-living bacterial lineages.


Assuntos
Adaptação Biológica , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Tamanho do Genoma , Metabolismo dos Carboidratos , Redes e Vias Metabólicas/genética , Proteínas/metabolismo , Água do Mar/microbiologia
19.
J Biol Chem ; 294(12): 4498-4510, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30683693

RESUMO

Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light-sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances-from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor-effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.


Assuntos
Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Luz , Fotorreceptores Microbianos/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Cinética , Transdução de Sinal Luminoso , Fotorreceptores Microbianos/química , Espectrofotometria Ultravioleta
20.
Appl Microbiol Biotechnol ; 103(3): 1289-1298, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30523371

RESUMO

AgWH50C, an exo-ß-agarase of GH50 isolated from Agarivorans gilvus WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of glycoside hydrolase (GH) family 50 agarases, including AgWH50C. Herein, based on the AgWH50C crystal structure, we designed several mutants by a multiple cross-linked rational design protocol used thermostability predicting softwares ETSS, PoPMuSiC, and HotMuSiC. To our surprise, the mutant K621F increased its relative activity by as much as 45% and the optimal temperature increased to 38 °C compared to that of wild-type, AgWH50C (30 °C). The thermostability of K621F also exhibited a substantial improvement. Considering that the gelling temperature of the agarose is higher than 35 °C, K621F can be used to hydrolyze agarose for neoagarobiose production.


Assuntos
Alteromonadaceae/enzimologia , Alteromonadaceae/genética , Dissacarídeos/biossíntese , Glicosídeo Hidrolases/genética , Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Mutagênese , Mutação/genética , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...